

Z8 Medium (Kotai, 1972)

Standard medium for freshwater cyanobacteria growth.

PROTOCOL Z8 LIQUID

- Sterilize all glass material and/or use sterile plastic material;
- Prepare the solutions in volumetric flasks;
- Use ultrapure water to prepare solutions;
- Autoclave separately the A, B, Fe-EDTA and micronutrients solutions;
- Prepare medium in the flow chamber under aseptic conditions;
- The solutions should be at room temperature when added to prevent precipitation;
- In the end stock solutions should be stored in the fridge.

Add the solutions to water according to the following concentrations:

Solution A 10 ml/L

Solution B 10 ml/L

Fe-EDTA Solution 10 ml/L

Micronutrients Solution 1 ml/L

Composition of stock Solutions

SOLUTION A

Reagent	Name	g/L
NaNO₃	Sodium Nitrate	
Ca(NO ₃) ₂ .4H ₂ O	Calcium Nitrate Tetrahydrate	5.9
MgSO ₄ .7H ₂ O Magnesium Sulphate Heptahydrate		2.5

SOLUTION B

Reagent	Name	g/L
K ₂ HPO ₄	Potassium Phosphate dibasic	3.1
NaCO₃	Sodium Carbonate	2.1

Fe-EDTA SOLUTION

Reagent	ml/L
FeCl₃	10
NaCO ₃	9.5

MICRONUTRIENTS SOLUTION

Solution	ml/L	
1 to 12	10	
13 and 14	100	

Composition of basic Solutions

FeCI₃ SOLUTION

Reagent	Reagent Name 10	
FeCl ₃ .6H ₂ O	Ferric Chloride	2.8 g
HCI (0.1 N)	Hydrochloric Acid	100 ml

EDTA-Na SOLUTION

Reagent	Name	100 ml
EDTA	Ethylenediamine Tetraacetic Acid	3.9 g
NaOH (0.1 N)	Sodium Hydroxide Solution	100 ml

SOLUTION 1 to 14

Nº	Reagent	Name	g/L	g/100ml
1	Na ₂ WO ₄ .2H ₂ O	Sodium Tungstate	0.33	0.033
2	(NH ₄) ₆ Mo ₇ O ₂₄ .2H ₂ O	Ammonium Heptamolybdate	0.88	0.088
3	KBr	Potassium Bromide	1.2	0.12
4	KI	Potassium Iodide	0.83	0.083
5	ZnSO ₄ .7H ₂ O	Zinc Sulfate	2.87	0.287
6	Cd(NO ₃).4H ₂ O	Cadium Nitrate	1.55	0.155
7	Co(NO ₃) ₂ .6H ₂ O	Cobalt(II) nitrate	1.46	0.146
8	CuSO ₄ .5H ₂ O	Cupric Sulfate	1.25	0.125
9	NiSO ₄ (NH ₄) ₂ SO ₄ .6H ₂ O	Ammonium Nickel Sulfate	1.98	0.198
10	Cr(NO ₃) ₃ .9H ₂ O	Chromium(III) nitrate	0.41	0.041
11	V ₂ O ₅	Vanadium (V) oxide	0.089	0.0089
12	AIK(SO ₄) ₂ .12H ₂ O	Potassium Aluminium Sulfate	9.48	0.948
13	H ₃ BO ₃	Boric Acid	3.1	0.31
14	MnSo ₄ .4H ₂ O	Manganese Sulfate	2.23	0.223

PROTOCOL Z8 SOLID

- Use ultrapure water with 1-1,5g agar per 100mL of water (1-1,5% w/v);
- Solutions should be at room temperature when added to prevent precipitation and water temperature with agar should not fall below 55-60 ° C, to prevent the agar polymerization;
- Prepare medium in the flow chamber under aseptic conditions;
- In the end stock solutions should be stored in the refrigerator.

Add the solutions to water according to the following concentrations:

Solution A 10 ml/L

Solution B 10 ml/l

Fe-EDTA Solution 10 ml/L

Micronutrients Solution 1 ml/L

Note: Stock solutions are the same as in liquid Z8 medium (see above).

- Gently shake after adding the stock solutions to prevent the formation of air bubbles
- Spread the semi-open plates in the flow chamber, distribute the medium by the plates, and wait until solidification (+/- 15/20 min).
- Close and invert the plates and, eventually, seal with parafilm. The set of plates should be sealed (eg: using the same bag containing the plates and that should not have left the flow chamber...) and preferably kept in the refrigerator until further use. At this time, open the bag with the plates in the flow chamber. It is possible that the plates have some water. If is that the case, partially open the plate(s) to use and wait until dry with the air of the flow chamber.

References:

Kótai, J. 1972. Instructions for preparation of modified nutrient solution Z8 for algae